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Abstract

This paper presents a simple algorithm which converts any
context-free grammar (without e-productions) into a connectionist
network which parses strings (of arbitrary but fixed maximum length)
in the language defined by that grammar. The network is fast and
deterministic. Some modifications of the network are also explored,
including parsing near misses, disambiguating and learning new
productions dynamically.
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*- ; *1. Introduction

My goal in designing a connectionist* parser was to be able to build, in a
systematic way, for any context-free grammar, a network which will parse
strings in that grammar (within a length restriction). The network must
represent the parse tree for the input when finished, and must clearly
indicate when there is no parse Most important, I wanted the network to be
deterministic and completely general. My goal is not cognitive modeling per
se, but to provide a powerful technique which could prove useful for natural
language understanding and other connectionist applications. Context-free
gcrammars have proven very useful to Computer Scientists. The existence of a
tast, simple and relatively efficient connectionist parser may well be of some
importance to Cognitive Scientists working with connectionist mode!s.

Several other connectionist parsing schemes have appeared recently.
Certain ideas can be found in all of them (including mine). They all parse
context-free grammars, using individual units to stand for the terminal and
nonterminal symbols. Given a production such as S -. NP VP, there are
excitatory connections from NP and VP nodes to S nodes which can provide
bottom-up evidence for the presence of an S, as well as excitatory
connections from S to NP and VP providing top-down feedback. When a
parse completes, the active units and their connections form a structure
isomorphic to the parse tree for the input. I will at times refer to units in a
parsing network as parents or children accordingly.

The work of Cottrell (1985) and Waltz and Pollack (1985) encompasses
natural language understanding in a much broader sense than syntactic
structure alone. Waltz and Pollack do not even attempt to build a general
purpose parsing network. Their network is custom built for each input.
Cottrell's networks are more general. He even has a program to build the
networks from an input grammar. Unfortunately, the network does not
always find the correct parse. 2

* . In both models, contradictory interpretations of the input are mutually
inhibitory. Only one should be on when the network stabalizes. Which one
depends on how much semantic and syntactic support each receives from therest of the network. A parse proceeds by activating the input, e.g. the node

- -- for "the" in position one, the node for "man" in position two, etc., and

0 AF letting the network run until it settles into a consistent configuration
. representing the parse of the input with all ambiguities resolved

The work of Selman and Hirst (1985) is nearer my own in ambition

their goal is a general purpose parsing scheme which will perform correctly
for any input. They do not consider outside influences, such as semantics

*, They use mutually inhibitory binder nodes to connect a nonterminal node to
all the subtrees it might dominate, each binder represer-iting a different

.or an n oduc*.ion O the conrnector;sz oaracigm, see ;eidrar na 3ailari ('982)

-hi can oe an acvantage ;rorn :'e oewooirt oi cognitive moce,,rg .f tte er-ors rn3Ce
esembie those mace cy numans
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production of the nonterminal. Likewise, binder nodes connect a node to all
-nodes which might dominate it. They use a variation of the Boltzmann

machine (Hinton and Sejnowski, 1983) computational scheme. The units
representing the input are clamped on. The others execute asynchronously,
turning on or off probabilistically based on how much excitation and
inhibition they are receiving. Simulated annealing (Kirkpatrick, Gelatt, and
Vecchi, 1983) is used to settle the network into a state where the active units
are mutually reinforcing to a large degree. The best possible state is one
which represents a legal parse. In order to reach this optimal state with high
probability, the network must settle gradually. Selman and Hirst used 24,000
updates for each unit.

My network is deterministic, fast, guaranteed to work for all inputs of
any context-free grammar, and conceptually very simple- It is a simpie, exact
connectionist solution to the computational problem of parsing
Contradictory parses do not inhibit each other (but see section three); all
possible parses proceed in parallel. This requires a large number of units -
typically tens or hundreds of thousands (see below)

The remainder of this paper is organized into four parts Section two
describes the network in detail, giving an algorithm for generating it from a

• 1 given CFG. An exact analysis of the network's complexity is presented, along
with some ways of trimming its size. Section three touches on some methods
of disambiguating, i.e. choosing a unique parse tree for ambiguous input.
Section four gives a cursory account of parsing near-miss input, i e. input
which is almost grammatical. Section five gives a detailed description of how

*productions can be learned dynamically in some circumstances. These latter
sections are intended to explore the flexibility of the parser as well as test
some connecuonist learning techniques They do not provide an account of
language acquisition.

All networks have been implemented using the Rochester Connectionist
Simulator (Fanty & Goddard, 1986). Simulation traces are included below.

2. The Network

- 2.1 Structure and function

The strategy used closely parallels that of the CYK parser (Hopcroft &
UlIman, 1979). The network contains units representing the terminals and
nonterminals of the grammar (several for each, in fact) as well as match units
which will be explained below The units are best thought of as organized
into a table, with the columns representing starting positions in the input
string, and the rows representing lengths. There is a unit for each terminal
symboi in each position of row one. There is a unit for each nonterminal at
every position in the table (potentially; see section 2 2). Terminal units are
activated by some outside source and represent the input to the parser. A
nonterminal unit will become active if other units representing the right-
hand s;de of one of its productions. and having appropriate staring positions
and lengths, are active. The parse proceeds in a bottom-up fashion Figure 1
illustrates the parsing of the string aabbb for the grammar snown. The
terminal symbols are activated as input. The A unit in the first row becomes
active because of input from the a unit in the same position and the
production A -.a The A jnt in (2,1) - row two, column one - becomes active

2
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Figure 1
Parsing the input aabbb. Only the elevant terminal and nontermira Jnjts are snovvr

because of input from both the a unit in (1,1) and the A unit in (1,2) and the
production A-.aA. Similarly for the B units. The S unit becomes active
because of input from A in (2,1) and B in (3,3). Because there is an active start
symbol in column one whose length is the same as the length of the input,
the input is accepted. In order to mark the end of the input, a special S unit
becomes active at the end of the input string.

x . The active units represent the parse tree. Of course, there will in general
be many units which become active but don't represent a final parse tree. in
the above parse, there will be an active A unit in (1,1), for example. This will
not affect the ability of the network to recognize, but a second, top-down,
pass of activity is necessary in order to pick out only those units which
participate in a complete parse - if the string is ambiguous, more than one
parse will stay active (see section three for possible modifications). The too-

.- down pass works as follows: when an active unit representing the start
symbol beginning in position one and of length n receives input from a 5
symbol in position n + 1, it becomes hyperactive. This unit is the root node of
all parse trees. It passes this hyperactivity down to all units which form part
of one of its completely recognized productions They pass the activity down
in turn until it reaches the bottom. Only the hyperactive units represent a
parse. In order to better distinguish the two levels of activity, a unit activated
during the first bottom-uo pass will be called primed, and a unit active after

* " the the final pass will be called on. In our simulations, primed units have a
potential and output of 5, on units have a potential and output of 10.

A more detailed account of how the network works follows There are
three kinds of units: nonterminal units, terminal units and match units. Each
unit has two sites, or locations, where an incoming connection might be
made. One is for bottom-up input. Enough input to this site will prime the
unit. The other site is for too-down inout. Every pair of units with a bottom-

0- 3.-
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up link between them aiso has a top-down link. if a primed match or
nonterminal unit receives input to the top-down site from an on unit, t will
turn on. The site functions are described below, and are given exactly in
appendix two.

The terminal units are the simplest. They are primed by some outside
source and represent the input to the parser. They are all on row one
because they must be of length one. One per starting position should be
primed in order to represent an input, although more than one might be
activated in the case of input ambiguity (see section three). The S units are a
special kind of terminal unit. One should be turned on in the position
following the input.

S -0-A B prmeci

match / match \

/ ,/ / \

A / nB./ 1  /'\/

I, V

:,gure 2
A 1 2 is the nonterminal unit reoreserting A, starting at positior 1, and of 'ength 2 Tnere s

a matcr unit for each com ination of iengtns ror eacn oroducton

The match units are used to reoresent the various instances of productions
for nonterminal units. They receive bottom-up inputs from units
representing the symbols on the r h s of their orocuction The starting
positions and lengths of these units must be consistent /vith the nonterminal
unit being served and Nwth each other For each nonterminal unit there is
ore -ratJh unit for eacn allowaoie combination of engtns for each
oroducion (see -,gure 2) The bottom-up iinks to the match units are

eIghted so tnat all the connected units must be orrred before the matcn
*jnrt becomes orired 7he bottom-uo inputs to a match unit are processed
*/vith a filtered-sum function The sum of the inouts is taken, but each ;nout is

*-
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allowed to contribute at most some fixed amount. This seems the most
natural and flexible way of fixing the following problem.

Suppose match unit X represents a production with three nonterminais on
the r.h.s. Two of the three nonterminal units are primed, giving an input to
the unit of (with weights of 2/3 on the links)

5- - ) =667
3 . 3

which is below the threshold of ten, as desired. Now suppose the first
nonterminal unit turns on because of top-down activation from somewhere
else. The input to the match unit is now

2 2 "2
t 0l - - 5 - - 1)" - = 10I

.3 .3 3

which causes it to become primed falsely. This is prevented by limiting each
* bottom-up input's influence to 5 ' weight.

*A nonterminal unit receives bottom-up inout from its match units If any
of them become primed, this means one of the productions has been
realized, so the nonterminal unit becomes primed A nonterminal unit
responds very simply to bottom-up input from its match units. if any are
primed, it becomes primed and provides bottom-up input to match units
above it.

if the priming eventually reaches a start-symbol nonterminal unit in
column one, row n and the input is of length n, then there is a parse of the
input. This root unit will be receiving "top-down" on input from the S unit in
row n + 1 used to mark the end of the input. This causes it to turn on. It now
provides top-down on input to its match units. Any which were primed turn
on, and provide top-down on feedback to all connected units. In this way the
parse tree(s) will be turned on from the top down. In order to achieve correct
behavior, the units must respond to top-down input in the following way. if
the unit is already primed and the top-down input is at the on level, then the
unit turns on. If the unit were not required to first be primed, then an on
nonterminal unit would turn on all its match units, even though the
production instance they represent may be quiet. Match units have on!y one
input to their top-down site, so they can simply respond to it in a thresholded
manner. Nonterminal units will typically have many inputs to their too-down

..-- site. Simply summing these inputs would result in incorrect behavior, as input

from two primed match units will have the same sum as input from a stngle
on match unit. To differentiate the two cases, nonterminal units take tre
maximum input as the value of the too-down site. This must be on to nave
any effect.

When primed terminal units receive on input at their top-down s::e, -hey
turn on as well. It is possible for the networK to detect when the parse s
complete by sensing the presence of an on terminai symbol in every column
uo to the length of the input. if we exclude productions with a r.h.s of

* 5



length one, the parse wilt complete in at most 4kInput-length steps The
network could reject input by timing out.

The network can be turned off by taking away the external input to the
terminal units (including S). This will remove bottom-up and top-down
activation from the network: the source of all bottom-up activation is the
terminal units, the source of all top-down activation is the S unit acting
through the root node.

2.2 Network construction

A program to build a network for a given context-free grammar has been
written in LISP and tested using the Rochester Connectionist Simulator (Fanty,
forthcoming). The algorithm appears in the appendix in a pseudo language
The strategy is to work bottom up, first placing each terminal in each position
of row one. Since the productions of a unit on row n depend only on units in
rows n, it is possible to build the network in a single bottom-up pass
througn the table. For each combination of lengths of each production, the
appropriate units are looked up in the table. If they exist, a match unit forthat production is created and the appropriate links made. If none of the
productions of a nonterminal in some location are possible, the nonterminal
unit is not made If, for example, the nonterminal B could only generate
strings of length three or more, then no nonterminal units of the form B n 1
or B n 2 would be created, and there would be no match units in charge of
productions looking for such units.

c-productions are not allowed, which is not too limiting, as a grammar
with c-productions can always be translated to one without They could
easily be added if desired. If there are productions of the form X-. Y, where Y
is a single nonterminal, then Y units must be processed before X units on each
row.

2.3 Complexity of the network

In order to facilitate the discussion, I introduce the following

L = maximum length of input string
T = set of terminals in the grammar
N = set of nonterminals in the grammar
m n) = set of productions of nonterminal n
vI p) = list of nonterminals in production p (may be reneats)
T.p) = list of terminals in production p (may oe reoeats)

The number of nonterminal and terminal units is reasonable In the worst
case there are

I. ___I .- -

of them. The number of match units is significantly larger, however in the
worst case there are

! ": 6K. ..
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match units. The sum represents, for each row, for each column, for each
nonterminal at that location, for all productions of that nonterminal, all the
possible combinations of constituent lengths in an expansion of that
production. The quantity (r-Itlp)I choose v(p)l-1 represents the number of
different assignments of lengths to constituents which will sum to the desired
length. The reasoning is as follows How many ways can three constituents

- " sum to ten? There are two boundaries between constituents to be chosen,
and nine different locations to choose from: (10-1) choose (3-1). The term
r(p,,I appears in the first term because terminals reduce by one the space into
which the nonterminals may expand.

For example, if L = 15, N = 10, In(n) = 5and iv(piJ = 3 for all
nonterminais and ignoring terminals, then the network will have at most
1,200 nonterminal units and 153,750 match units. This figure can best be
improved be keeping v(p) small (by putting the grammar in Chomsky normal
form, for example). If Iv(p)I = 2 in the above example, the number of matcn
units will be at most 34,000. The size of the network is O(nm ), where n is
the length of the network and rm is the number of nonterminals on the right-
hand side of the productions. Thus, it may be desirable in practice to limit the
number of nonterminals on the right-hand side of a production to two. if this
is done, the size of the network will be O(n 3 ).

For the following grammar, taken from Selman and Hirst (1985i, for
inputs of length up to 15, the number of nonterminal units is 570 and the
numoer of match units is 2,040.

S -. NP VP NP-, determiner NP2
S . VP NP -NP2
VP -verb NP -NP PP
VP -, verb NP NP2 -, noun
VP -, VP PP NP2 -. adjective NP2
PP . preposition NP

The number of units may be significanLly smaller than the worst case if
several nonterminal units cannot generate strings of all lengths (esoecially
short lengths). The network described above would have 30 more
nonterminal units and 210 more match units if PPs could generate strings of
length one. A better example of the potential savings ;s nrovdec be the
following grammar which has the same number of nonterminais ana
productions as the preceeding grammar, but no nonterminal can generate

' strings of length one.

v...S-.DB D-.cA
L<-..S -.,B 0 D -A

B -aD D -. DC
SB -BC A ed
C-.b0 A eA

9:,.
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For inputs of length up to 15, the number of nonterminal units is 458 and tne
number of match units is 1561 if nonterminal units for each nonterminal
were placed at each location of the table, the number of nonterminai units
wouid be 600 and the number of match units would be 2794.

The simulations run in 0(n) time, where n is the length of the input
Multiplying the execution time by the number of units (with the length of the
r h.s. of productions limited to two), we get a total of 0(n,-') computation
steps. The serial execution time for parsing is 0(n3 ) for straightforward
parsing algorithms and about O(n 2 5) for the asymptotically best a~gor thri so

"1 far This means that the network is bggersower than the best .we could
expect by about a factor of n. This is because the algorithm s not completely
parallelizable The activity must work its way up from the bottom set afl

2.4 Implementation using two-state linear threshold units

it is possible to build an equivalent network using only simoie, sjnge-site.
'inear threshold units which have only two levels of activity on and off (1 and
0) The transformation is simpie. Replace every unit n the orignal networK
with a pair of units - one for the bottom-up pass, and one for to the too-
down pass (see Figure 3). The bottom-up unit being active corresoros to zne

44A

%" CdS POt"Ome JO rr 3

:: 4/ \[

' e simoer .riS car do ne loo ot ore -ore om lex unlt

original unit being primed- the too-down unit being active corresponds to
the original unit being on. The bottom-uo tnouts to matcn uni p airs will be
veighlted as oefore to require them ail to oe on They no loncer rield to oe

fitered as they only come from other bottom-un units The too down unt
does not neeo to take the maximum of its ;nouts as it onlv rp(eives iroil frorn
o,:rer top oown nodes in order to require thiat the pair oe p!rmec oe 4oretu ring on he we.qnt on the Ink from the bottom-uo unt to the to,-or
-vi neeo-s to equal the sum of the weghts on tne other routs to -e too

a w \.Airi unit, a'nd the threshoid on the top-down unit must De set so trat t
must receive inout from the bottom-up unit and at least one too-down ,nout

- o
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When the parse completes, the active top-down units represent the parse

tree.

2.5 Informal proof of correctness

In order to establish the correctness of a network as described above, we
need only show three things. (Assume the grammar has no r-productions. All
units begin off except those terminal units representing the input, which are
primed.)

(1) A nonterminal uit A.m.n will become primed if and only if other
terminal and nonterminal units spanning m through m + n in exactly the
order of one of A's productions are primed.

We will say that these other terminal and nonterminal units satisfy one
of A's productions. A will become primed if and only if one of its match
units becomes primed. These are the only units with connections to its
bottom site, and only input to this site will cause an off unit to become
primed. Each match unit corresponds to one of A's productions. It has an
input from a unit corresponding to each symbol in the production in such
a way that positions m through m + n are spanned exactly. The weights on
the inputs to the match units are such that they must all be primed in
order for the input to exceed the threshold. Each input is filtered so that

- no single input can contribute more its share. Every possible satisfaction
--. of each of A's productions has a corresponding match unit.

- (2) When the input is of length n, the first nonterminal unit to turn on (if any
do) will be S. 1.n, and it will turn on only if it is first primed. (S is the start

S"symbol.)

In order for a nonterminal unit to turn on it must first be primed and
then receive on input to the top-down site. Since input from an on unit is
required to turn another unit on, the first unit to turn on must receive top-
down input from S.n + 1.1, the only unit on from the beginning. The only
unit with such a connection is S.1.n.

(3) A nonterminal unit- other than the first to turn on, as in (2)- will turn on
if and only if it was first primed and it is one of the units satisfyig a
nonterminal unit which turned on previously.

Following (2), we need only show that a primed nonterminal unit will
receive input to its top-down site from an on unit if and only if it helps
satisfy some production of an on nonterminal unit. Except for input from
the on $ unit, which has just one connection to the root node,
nonterminal units receive input to their top-down site only from match
units to which they contribute. A match unit will turn on just when it was
first primed (production satisfied) and its parent nonterminal unit turns
on. All inputs to a primed match unit contribute to the satisfaction of its
production instance.

4:: 2.6 Simulation results

A network for the grammar in section 2.3 was built and simulated v'ith
,-. the following input. det noun verb det adj adj noun, which corresponds to

9



sentences such as The man kissed the tall attractive woman. The results of the
simulation are given in table 1. Only units which have non-zero potential are
shown. Match units are omitted in order to make the table more readable.
After 26 steps, the network is stable. Those units with a potential of 10
represent the (unique) correct parse.

Table 1
Simulation of det noun verb det adj adl noun

Potential after 1 Potential after 13 Potential after 26
Unit name step steps steps

det 1 5 5 10
noun 2 5 5 10
verb 3 5 5 10
det 4 5 5 10
adj 5 5 5 10
adj .6 5 5 10

noun 7 5 5 10
$8 5 5 5

NP221 0 5 10
NP.21 0 5 5
VP31 0 5 5
S.31 0 5 5

NP2 7 1 0 5 10
NP71 0 5 5

NP 12 0 5 10
S.22 0 5 5

NP2 62 0 5 10
NP.62 0 5 5

S.13 0 5 5
NP2.53 0 5 10

NP.53 0 5 5

NP.4.4 0 5 10

VP35 0 5 10
S3.5 0 5 5

S2.6 0 5 5

S17 0 5 10

Table 2 shows the results of simulating noun verb det noun preo noun
prep det noun, e g John hit the man with Tom with a hammer. This sentence
is ambiguous in many ways. Notice the overlapping constituents, such as the
PP from 5 to 9 (PP 5 5 and the NP Irom 3 to 6 (NP.3 4) The match nodes
provide enough information to aistinguish the various oarses, but if the
match nodes are invisib~e externally, the state of the networK does not make

* "0
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sense. In any case, it may be desirable to select only one parse. This is the
topic of the next section.

Table 2.
Simulation of noun verb det noun prep noun prep det noun

(terminals not shown)

Potential after 26
i n Potential after 13 Potential after 26 steps withUnit name steps steps disambi guation

'section three)

* . NP2.1.1 5 10 10

NP.1.1 5 10 10
VP.2.1 5 5 5S.., 2.1 5 5 5

NP2.4.1 5 10 10
NP41 5 5 5

NP2.6.1 5 10 10
NP.6.1 5 10 10

NP2.9.1 5 10 10
NP.9.2 5 5 5

S1.2 5 5 5
NP.3 2 5 10 10
PP 5.2 5 10 10
NP 8 2 5 10 10

VP2 3 5 10 10
S23 5 5 5

NP4.3 5 5 5
PP.73 5 10 10

S.1.4 5 5 5
NP.3.4 5 10 5
NP.6.4 5 10 5

VP 2.5 5 10 10
S.2.5 5 5 5

PP 5.5 5 10 5

S1.6 5 5 5
NP4.6 5 5 5

NP.3.7 5 10 5

VP2,8 10 10
S.2.8 5 5 5

S, i.9 10 10

9.-i



3. Disambiguating

A lot of local disambiguating happens naturally because some
interpretations do not participate in a complete parse tree and, thus, never
turn on. This could account for word sense disambiguation in many cases.
For example, to parse the sentence The man walked on the deck, both noun
and verb would be primed in position six, but only noun would turn on, as
there is no complete parse using the other interpretation

When the input is truly syntactically ambiguous, however, more than one
parse tree will be on simultaneously The parse can be made unambiguous by
allowing only one match node (i e production) per nonterminal unit to
remain active. The simplest way to do this is to order the match units of each
nonterminal and add inhibiting links from each to those of lesser rank. Any
inhibiting input from a superior match unit would be enough to prevent
activation. Only the highest ranking primed unit would stay primea The
match units would need to be ranked not only according to which production
of the grammar they represent, but also according to the combination of
lengths of their production. The ranking would not need to be consistent
throughout the network. One production could dominate another only for
short lengths or towards the beginning,for example

4 The above scheme was not implemented; however, a different scheme
was. In this scheme, each match unit inhibits all the other match units
belonging to the same nonterminal node An off match unit receiving
inhibiting input will not become primed Thus, this scheme prefers shallower
parse trees.

Because the simulator used is synchronous, multiple match units will prime
simultaneously whenever the subtrees have equal depth. When this
happens, the inhibition must be gradual, or the match units will turn each
other off This will allow them all to come back on the following step and
cycle in this manner indefinitely. The following behavior reliably yields a
single winner. The inhibiting weights between the match units vary
randomly between -0.5 and -1.0 exclusive. A primed unit receiving inhibition
will lower its potential by an amount equal to the strongest inhibiting input
When the potential gets to zero, it turns off. When only one match unit is

" - left, the lack of inhibition allows it to gain its full primed potential of five
For example, suppose two match units become primed at the same time and
that match unit M1 inhibits M2 with weight - 06 and M2 inhibits M1 with
weight - 0.65. The following is a trace o their behavior in one steo
increments (with minor arithmetic errors):

M1 5 0 1.75 0.45 0.0 00
M2 50 199 094 0.67 50

6 M2 has a higher potential after the first round of inhibition because it is
more weakly inhibited Now M2 is receiving inhibition equal to - 0 6 75
and M1 is receiving inhibition equai to -0 65 * 1 99 M2's domination of M1
is increasing. There is no way for M 1 to push M2 under 0 since its Dotentia! s
iess than M2's and its inhi)ition is less than its potential With more than two
match units on the interactions are more complicated. If the inhibiting inputs
were summed, it would be oossibie for every match unit to go off after one
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step and oscillate as described above. This is why the total inhibition is equal
to the strongest single input.

If the inhibitory weights between match units were adjusted dynamicaily
according to how often the match unit came on, then the network could
learn to prefer more common interpretations. It might also be possible to use
nonsyntactic information to affect the preferred parse with external
contributions to the inhibition. This was not implemented.

The last column of Table two shows a simulation of the ambiguous
sentence from the previous section using the disambiguation scheme just
described. A single unambiguous parse tree results No match units battled,
as the ambiguities involved parse trees of different depths; the first on won
by default. For example, in deciding between the two productions VP -. verb
NP and VP -. VP PP, the latter always wins because its parse tree is shallower.
I make no claims about the adequacy of this scheme. I present it as a
demonstration of how disambiguation could be done in this model. Other
strategies are possible as well.

4. Parsing near-miss input

-10 It is sometimes desirable to give a reasonable parse of input strings which
are not in the language defined by the grammar - ungrammatical but still
understandable natural language utterances, for exampe. The parsing
network described above is too rigid to do this effectively if some of the inout
is missing or there is extra input. But if the source of the ungrammaticality is
simply the substitution of incorrect input of the same length as some correct
input, then it can be made to do this by having match units become partially
primed to an extent reflecting the closeness of the match between the input

"- string and the production.
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may have a potential between 0 and 2. This range was chosen so that
inhibition from a partially-primed match unit will always be less than
inhibition from a primed match unit. The weights on inhibiting connections
range from - .5 to - 1 0. A primed match unit will always deliver inhibition
of - 2.5 or less; a partially-primed match unit will always deliver inhibition of
- 2 0 or more. Primed match units always inhibit partially-primed match
units. Partially-primed match units compete wvith each other much as primed
match units do (see section three). except the inhibition from a partially
orimed match unit is not strong enough to prevent the priming of other
match units This is necessary, as a match unit may become partially-prlmed
before one of its brothers becomes fully primed The strongest partially-
primed match unit may be beaten out by weaker partially-primed match
units because of the random variation in the strength of the inhibiting
weights

Because inhibition from a partially-primed match unit does not prevent
other match units from becoming partally-primed, care must be taken to
prevent the re-priming of a partlally-primed match unit which has just been
defeated Unless it subsequently receives additional input and becomes fully
primed, a defeated oartiaily-primed match unit will stay off.

d The permissiveness of the network can be adjusted by setting a minimum
input required for partial priming. In the simulations run, the cutoff was 3
(an input of 10 represented complete satisfaction of the production). The
potential of a oartrially-primed match unit is equai to its total input divided
by 5 Some of the key steps in a simulation of the ungrammatical input det
det noun verb noun are given in Table three The grammar used was the one

Table 3
Near-miss parse of det det noun verb noun

(Only relevant units shown.)

Potential after step

Unit

0 3 7 10 14 15 17 23 and after

det 1 50 50 5 5 0 50 50 50 100
det.2 50 50 50 50 50 50 50 50

noun.3 50 50 50 50 50 50 5 0 100
verb4 50 50 '50 50 50 50 50 100
noun 5 50 '50 50 150 50 '50 50 100

56 50 '50 500 '50 .100 1100 100 100

NP2 31 00 50 50 50 150 50 50 100
NP251 00 50 50 50 50 150 50 100

NP51 00 00 50 50 50 50 50 100
NP222 00 00 105 105 1 05 105 105 100
VP42 00 105 50 150 :50 50 100 100
NP13 0 0 105 127 1.27 i1 27 1 27 10 0 10 0
S 1 5 00 00 00 1.32 132 100 100 100

lid
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in section 2.3. Only the relevant units are included. As before, many units not
in a complete parse will become primed. Even more become partially-
primed. All the non-match units which eventually turn on are shown. The
partial-priming of NP.1.3 after step 3 is due to input from det.1; after step 7,
it (actually, its match unit) is also receiving some input from the partiaily-
primed NP2.2.2 so its potential increases to 1.27. Eventually, the partial
priming reaches the root node S. 1.5. What happens next differs from
previous networks. In this network, the end-marker, $.6, must have potential
equal to 10 in order to provide sufficient top-down feedback to turn on the
root node. It requires five steps to reach that level. This is to give complete
parses a chance to reach the top. Once a partially-primed match node turns
on, it is too late for a fully primed match node to inhibit it. When the parse
completes, the section of the input which does not fit into the parse remains
primed.

In a simulation with input det det det verb det det det, no parse
- completed NP1.3 and VP4.4 were both partially primed, but their combined

.nput was less than the threshold for S. 1.7's match unit.

5. Learning new productions dynamically

i1 The near-miss network described 3bove has been modified to learn new
productions dynamically. The circumstances under which it is capable of
learning are depicted in Figure 5. After a near-miss parse, there will be a gao

S
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in the parse tree where some canstituent was "expected " but niot foundl If
the gap can be parsed as one or twvo constituents, then a match noae
representing the new production will be recruited (Feldman, 19821 (A -8 C ;n
Figure 5).
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This mechanism cannot explain the acquisition of a grammar from raw
data. For one thing, no new nonterminals are learned. This is especially
limiting given the restriction on production length (see below). it can
sometimes account for new rules composed of known constituents. The real
purpose of this section is to explore the flexibility of the parsing network I
do not claim to have an adequate mechanism for grammar acquisition

5.1 Local learning

This section describes the recruitment of a match node to represent a
production instance The production will not be recognized elsewhere :n the
network. In order to make the network more tractable, the right-hand side
of productions must be of length one or two I will call such productions type
one and two resoectively. For any context-free grammar, there is a weaKlV
equivalent grammar satisfying this restriction. Each bottom-up input to a
match unit now goes to its own site Accompanying each nonterminal unit s
a single learn unit and some free match units which do not yet represent a
production. Fixed match units represent production instances as before
except for the presence of two bottom-up sites for type two oroductions. A
nonterminal unit being turned on from above without having first been
primed means an instance of the nonterminal is expected but not found. This
turns the learn unit on, which enables the free match units lf the input in
question can be parsed as one or two constituents, then some match unit will
be recruited to represent this production instance.

The additional bottom-up sites are to enable free match units to detect
when they are receiving bottom-up input from a potential production. Each
free match unit can learn only production instances with some fixed
combination of constituent lengths or division For example, tne free match
unit in Figure 6 can learn productions with two constituents, the first of
length four and the second of length six. Notice that any combination of one
input to the bottom-right site and one input to the bottom-left site
constitutes a legal production.

-E Figure 6 depicts the setup of a free match unit just before learning occurs

The free match unit is receiving bottom-up ,nout to each site from exactly
one unit. It has not yet primed because it is in a free state; it requires
additional input from the learn unit before responding The nonterminal
unit 8 3 10 is on but no match unit is primed This will cause the learn unit to

* come on The learn unit requires on input from 8 3 10 and is inhibited by the
match units Once the learn unit comes on, the free matcn unit will become
highly active briefly I will call this state excited It now inhibits the learn
unit, whose job is done. If more than one input per bottom-up ste had been
active, the free match unit would not have responded

Three changes now occur which transform the free match n,t into a fixec
match unit First, the unit no longer enters the free state n wnicn input from
the learn units required Second, the weights on all inact+ve bottom-uo tn!s
are zeroed The match unit now responds only to the oair earned Third, the
top-down links to the learned constituents are given positive we'gnts It s
the need for this weight change which necessitates the special e.ctec act.vty

* of a match unit which has just learned a production Weight change occurs at
the destnation unit. The only way for 8 3 4 and C 7 6 (see ;gure 6) to <now
to increase the weight on the top-cown lifKS from the match unit s from thisV'.
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Figure 6.
Configuration of free match unitjust before learning. The Learn unit is about to turn on

level of activity. The other, non-primed units receiving top-down excited
input do not change the weights. Because of the excited input, B.3.10, B.3.4
and C.7.6 become momentarily excited as well. Soon, all excited units settle
to an on state and the parse completes. The situation after learning is shown
in Figure 7.

It is possible for free match nodes in separate divisions to each learn a
production at the same time. This ability is necessary for global learning in
the next section. Since all match nodes inhibit each other, it is necessary to
suppress this inhibition during learning. Because of this, all interpretations of
ambiguous input will be learned if they are in different divisions and none
will be learned if they are in the same division. If there is more than one
match node representing a division, only one should learn a new production
This can be achieved by ordering the free match nodes of a division and
putting strong inhibitory connections from the earlier match nodes to the
learn site of the later ones.

- . Table four shows a simulation of a local-learning network for the simple

grammar

S -AB A-.aa B--b

The production instance being learned is B.3 1 -. b.1 After step 13, the "ear-
miss parse has activated B 3.1 even though it was never primed. The learn
unit and the free match unit take a couple of steps to come on B 3 1 and,
after step 15, the learn unit are decaying- If learning does not haooen, the,v
will turn off eventually Notice that a.3 becomes excited two steos after the
match unit does. The delay :s caused by the need to increase the wegnt on

p -



B 3

;iur

Cofgrto ~3 ofm tnuijuta erl rig

Demongu ration of locnuijuat learning

(Only relevant units shown.)

Potential after stkep
Unit - -

12 13 14 15 16 17 !18 19 20

a. 1 5 1 10 10 10 10 10

a 2 5 5 5 10 10 10 10 10 10
a 3 5 '5 5 5 5 5 15 15 10
$4 10 '10 10 10 10 10 10 10 10

B B31 0 10 9 18 18 15 15 15 10
IearnB3l1 0 0 8 :15 14 0 0 0 0

match 0 0 0 '3 15 15 15 10 :10
4 12 5 10 10 10 110 10 10 10 10

k$ S13 1 10 10 10 H 10 10 10 10

18
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Table 5
Same input as in Table 4, but after learning

(Only relevant units shown.)

Potential after step

Unit

6 7 9 10 1I .1111

a. 1 5 5 5 .10
a.2 5 5 15 5 10
a.3 5 5 5 5 10
S.4 10 10 10 10 10

B 3 1 5 i5 10 10 10
learnB.3.1 0 0 0 '0 0

match 5 5 5 10 10
A.1.2 5 5 10 10 10
S.1.3 5 10 10 10 10

the link from the match node to a.3. Table five highlights a parse of the same

input after learning.

5.2 Global learning

This section describes an extension to the above scheme which distributes
a production instance learned locally throughout the whole network.
Although the exact mechanism is different, the idea of using a central
template to program other representations was insopired by McC!elland's
(1985) Connection Information Distributer I will first give a high-level
description of what happens, then provide a more detailed description of the
implemented network. There is a single, global representation of each
production When learning occurs locally, the production learned is noted ;n
the global store. After the network calms down, it enters a special learn
state, which limits the spreading activation. When global learning occurs, the
units involved in the production are activated throughout the network by the
global representation in such a way that the local learning mechanism of the

0 4previous section burns in all the production instances.

* . When every instance of some production in the network is active and
" "learning simultaneously, a great deal of care must be taken to insure cross-

talk does not occur. A single unit, such as NP.3.4, may be both the parent and
son for the same production. In order to distinguish the various roles a unit

O * may play, a separate unit is used for each. To facilitate this, the grammar
must be in Chomsky normal form, which means that all productions have the
form
X -. Y Z or X -. a, where X, Y and Z are nonterminals and a is a terminal Any
context-free grammar can be converted to a weakly equivalent grammar in
Chomsky normal form (Hoocroft & UlIman, 1979). For sucn a grammar, there
are only three roles a nonterminai can play parent, left-son and right-son.

, . Accordingly, the too oreviousiy done by nonterminal units s now done by a

• ." '°" ' ,9

..-........................



Z~ Ii A34

, 4 match

B.3,1 C 3

Figure 8NroOuction instance A 3 4 -B 3 1 C 4 3 wth reievar't ,rks sno'An

trio of units, one for each role of the nonterminal. Figure 8 shows the setuo
for the production instance A 3 4 -- B.3.1 C.4.3.

6 Normally, the three nonterminal units pass on activation. Bottom-uo
activation is spread from the match unit to the parent unit to the two son
units which are connected to other match units. Top-down activation comes
from one of the son units and goes through the parent unit to the match
unit. However, the spread of activation between parent and son units for a
nonterminal group is blocked when the network is in a giobal learn state !n
the networks mplemented, this s done by having tne activation go througn
pass unitswhich are nhibited by a GlobalLearnUnit (see Figure 10) When
the network is not in a global learn state, it beiaves just like the one
described in section 5 1, disambiguation, near-miss parsing and locai earning
work the same way The network has a central representation of

E productions comprised of four pools of units (Figure 9) The top pool has ore
unit for every nonterminal and represents that nonterminal as a parent The
bottom left (bottom right) pool also has one unit for every nonterminai and
represents that nonterminai when il is the left-son (rignt-son) The tErmnar
pool hasone unit oer terminal and represents that terminai as a son To
represent the production A-.8 C, a production unit will have two way

* excitatory links to the A unit in the top pool, the B unit in the bottom left
pool, and the C unit in the bottom right pool

-he global units are connected to nontermina, groups tnrougnou. tine
parsing network in the following ivay (see Figure 10). Each unit ,n *he too
pool is connected to the top site of the parent urit in a~l the nontermina,
groups for that 't. When a unit in the top pooi turrs or the bottom .jritS
in -il the correspciding nonterminal groups ,urn on Eacn ur) .n the oottom
!eft pool is connected to the oottom sIte o te eit son uj: . 3il t"e
nonterminal groups for that ln t /he- a unit n the bottom eft poo turn
on, the top ,eft units n ail the corresoornicg ronterm rat groups oecore
Qrimea There -re simnlar conrectos ,or :ne bottom rngnt pool tO the
right-son unit of eacn cor-esoonacr'g -o,termna grotto ard from ttne
terminal pool to the terminal units

29 . . . . .
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the central pool to become ormed If exactly one unit n the top 'ooooi aflO
one in each bottom or one in the terminal ooli are prrned, a unique
production .s represented by the pattern of actvation This is how 'he globa,
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production representation knows wnen local learning has occurred and what
has Peen learned

Here is what happens when learning occurs. The local learning
mechanism causes some Production to be learned. The parent and two
children of the production instance learned become excited In the parent
nonterminal group, only the bottom unit becomes excited because the Pass
units in a nonterminal group do not pass on excitation Similarly, in the left
son nonterminal group, only the upper left unit becomes excited, and
likewise for the right -son This causes the corresponding units, n the centrai
pools to become primed (This does not seriously affect the parsing network
The global production unit representing this production ;s now receiving
activation from ail three components and will become primed after two
simulation steps If more than one global production unit attempts to
become prmecl at the same time, mutual inhibition will force them all to zero
potential and global learning of these productions will not occur. This
Prevents the cross talk which would occur if two productions were turned on
in the central template simultaneously. Once a global production unit
becomesor/med, it innibits all other global production units. The
components of the production in the global nonterminal ana terminal pools
become inactive as soon as they stop receiving excited input from the

* network The nrimed feedback from the global production unit is not
enough to keep them active Self feedback keeos the Production unit
orimed. It witl not turn on until the Parse is finished. It requires excitation
from the GlobalLearnUnit, which does not turn on until the networ< has
finished a parse (during simulations, this unit is turned on Dy nandi

Whe, the Parse comoletes, the terminal units are turned off and the
network calms down The GlobaiLearnUnit is turned on Ths causes the stil

ri mea oroduction unit to turn on, vvnich turns on the global units
comprising the Production For example, if the production to oe learned is
A -13 C, then the A unit in tne too Pool, the B unit in the lower lef-t pool, and
the C unit in the lower rgnt Pool will be on This causes all bottom units in A
ronterminal groups to turn on and all top left units in B nontermina, groups
and all top rignt units in C nonterminal groups to become orimed Because
the GlobalLearnUnit s inhibiting the Pass units, activation wil not spread
within nonterminal groups

* . The situation is just what ;s needed for local learning to occur all over the

network The bottom unit of the B nonterminal groups is on, but no fixed
match init is oprmed For each division, there wiil be one free match unit
receiving input from B as eft son and C as rght son. These productions will
be learned (This will not affect the glooai poois of units ;n th'eir current
state ) After a few steps, the giobal units become exhausted ano turn off.
They will remain quiescent for a lew steps onger - enouqh to let he neti/ork
calm down When the network ,n ts lose np,it 'rom these gioba! units, they
quickly die down

n the networK descrioec so far goa !ear: ,trg ,vouid not occur at the
nonterminai group wnicn learned te produjct on ocaily For exampie,
suppose the local produc on instance 4 4 3 - 3 - 1 C 5 2 -s earnred a it e
-vhiie later globai earning taKes oiace 3 4 2 and C 6 1 are orimed and -, 4 3
son , out A 4 3 will not earn this Production instance oecause 3 4 1 and

C 5 2 are also primec, wnicn orrres- he now fixed match unit for this

22
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production, which inhibits the local learn unit for A.4.3. This is avoided by
having the GlobaiLearnUnit inhibit the inhibition of local learn units. It has
a strong positive connection to all local learn units at the inhibit site. We now
must worry about redundant match units being learned. This is prevented by
having fixed match units inhibit free match units with the same division If
the production being learned is already known for some division, then that
fixed match unit will become primed, and no new match unit will be fixed.
This is an extension of a mechanism already in place: free matc units already
inhibit other free match units (ranked lower) within the same division. These
inhibiting connections remain even after the unit becomes fixed. All we need
to add are inhibiting connections from match units which begin life fixed.
With this addition, the new production can truly be learned globally. It also
makes the network more robust, as described in the next section.

The network builder was programmed to make two unfixed match nodes
per division per nonterminal group in order to test that no redundant
productions were learned. Simulations for the following grammar worked
correctly (the results are somewhat big for a table, so they will be
summarized).

SS -. AB A- a C--c
B -BC B-.b

First, the network was run with the input b c a b. This resulted in a near-miss
parse (actually the miss was not too near). The production instance
A. 1.3 -B 1 2 A.3.1 was learned. This caused the three units A. 1.3.parent,
B.1.2.1son and A.3.1.rson to become excited, which primed the global units
A.Parent, B Lson and A.Rson, which primed A->B.A, the global production
unit for A-.B C. A couple of steps later the excited network units calmed
down to on. This caused all the global units except A->B A to turn off

-When the parse completed, the terminal units were turned off and the
network -was run until only A->B.A was left ortmed (about 12 steps) The
GlobalLearnUnit was turned on by hand, which turned on A->B.A, which
turned on A.Parent, B.Lson and A.Rson. On input from these units turned on
all A.x.y.parent units and primed all B.x.y.lson and A.x.y.rson units. Learn
units for all the A.x.y groups came on. The ones with length greater than one
had free match units get excited, one per division, and learn their new
prod uctions.

* The A. 1.3 group had its fixed match unit for A. 1.3 -.B 1 2 A.3 1 rime
because of the production instance it had just learned This did not prevent
the learn unit from coming on because the GlobalLearnUnit was on It did
prevent the other free match unit with the division 2 + 1 from activating. One
free match unit for the division 1 + 2 became excited and learned the

'-. production instance A.1.3-.B. 1.1 A2.2. After a few steps, the global
9 nonterminal units (but not the GlobaiLearnUnit) become exhausted as co all

tne learn units. The network quickly calms down.

After learning, the network was tested with the input b b a a b, wnicn
requires requires the use of two new instances of the production A-B A. The

- parse comoleted successfully The following units were on when the neA,work
stabiiizea
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S 1 5 par

A 1.4 Ison
A 1 4.par

A 2 3 rson
A 23 par

B 2 2 Ison
B 2 2 par

B. 1. 1 son B 2 1 Ison C 3 irson A 4.1 rson B 5 1 rson
B 1 1 par B 2.1 par C 3 1 par A 4 1 par B 5.1 oar

b1 b2 a.3 a4 b5 $6

5.3 Deferred learning

The global learning described in the previous section would fail to
distribute productions learned locally if more than one is learned during a

_ -parse. It is possible for the network to take advantage of periods of quiet to
catch up on unlearned productions. The mechanism I propose (but have not
implemented) is spontaneous excited activity of fixed match units when the
network is quiet. The probability of a match unit becoming excited would be

S. inversely proportional to the length of time it has been fixed, so that recently
fixed match units would be more likely to become excited. The excited match
unit would excire the parent and children of the production, which would
start global learning as in the previous section More than one match unit

* activating simultaneously would do no harm. Global learning of already
learned productions will have no effect as described above

One way to accomplish this would be to run a fink from the global learn
unit (which could just as easily be a network of units) to match units The link

* would be to a new site. The global learn unit is on when parsing is not taking
place, so if the match unit responded to input to this site by becoming excited
probabilistically, we would have the desired effect. The weight on this link
could be made non-zero when the unit becomes fixed and gradually decay
after that. Recently fixed match units would get the most activation and,
thus be more likely to fire.

Rehearsing productions also makes the network more robust If a
match unit were to "die", then another would be recruited to take its place
the next time its production was rehearsed.

-,.- 6. Discussion

S -I consider the major advantage of my parser to be its generaiitv and its

quick, sure results The major difference between it and othe, Darsing
schemes is the way it maintains all possible Darses in oaralle!, eliminating tne
need for search (i e. relaxation) One of the goals of connectionism :s to
account for the solution of complex tasks in a few computational steps Using
massive oarallelism. My network aoes exactly that.

7... o
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The major disadvantage of my parser is its rigid structure and fixed
length. Because the length of the network is fixed, the set of strings parsed is
finite. Of course, this is true of any implemented parsing mechanism, but one
might hope for an extendable structure. It would be nice if the network
could parse longer strings by acquiring more resources (i.e. units) on the fly.
McClelland's (1985) CID mechanism may prove useful in this capacity
(McClelland and Kawamoto, 1986), though the resource requirements of CID
are substantial. I would very much like to be able to efficiently acquire and
release general purpose working units as needed. Nevertheless, I think that
fixed length structures can prove useful and may point the way to flexible|4 structures which perform the same task.

The parsing algorithm upon which my network is based is an example of
dynamic programming (Aho, Hopcroft & Ullman, 1974). Other problems with
efficient dynamic programming solutions may have similar parallel
implementations. One such problem is finding the number of edit operations
(insert, replace and delete) required to convert one string to another. A fast
implementation of this algorithm could be very useful in cognitive tasks
requiring pattern matching. The values passed during a computation are the
number of edit steps so far. This means that a potentially large amount of
information must be comunicated, unlike the parsing network in which only

4" the existence of constituents is communicated. While this does not stand in
the way of a fast parallel implementation, it may present complications for a
connectionist model, where the output values of units are not meant to carry
much information (Feldman and Ballard, 1982).

The learning mechanism described is certainly inadequate as a theory of
language acquisition, but in keeping with the purpose of the paper, it does
demonstrate some techniques which may prove useful. In connectionist
models, multiple copies of subnetworks which do the same task are common.
Learning in such a way that all copies are kept consistent is a difficult
problem. My solution does this with a minimum of overhead. It may even be
possible to use a similar mechanism to learn new syntactic categories
dynamically. The learning results also demonstrate that the network can be
flexible-

There are several directions future work might take. One would be to
make the length restriction more flexible. Another would be to improve the
learning algorithm. The results given only scratch the surface of what is

• needed. Another we have partially worked out would be to efficiently
extend the network to handle augmented grammars (Gazdar et al., 1985) in
which the grammar symbols have properties. Rules are applicable only if the
properties meet the accompanying restrictions, e g. that the NP and VP have
the same number.
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Appendix One

Network Building Algorithm

length is the maximum length of the input string
nonterminas is the set of nonterminals
terminals is the set of terminals
start-symbol is the start symbol of the grammar

for i <- 1 to length /* make the terminal units */

for-each term in terminals
MakeUnit( type *-Terminal, name *- term.i.1)

endfor-each
MakeUnit(type <-- Terminal, name 5-$i.1)

endfor

for row *-- 1 to length
for col - ito 1 + (length - row)

for-each ntin nonterminals
for-each prod in Prod uctions-of(nt)

if (row -_ Lengthaf(prod)) then /* possibly room *

E DoProduction(row, col,nt, prod)
endif

endfor-each
endfor-each

endfor
endfor

/* connect end markers with start symbol units *
for- 1 to length - 1

if (Exists(start-symool. 1. )) then
MakeLink(from <-- $ / + 1. 1, to *- start-symooi I,

weight 4.-2, site *- too)
endif

endfor

if (Exists(start-symbol 1 length )) then
MakeUnit(type -- Terminal, name e- $ length + I

* MakeLink(from -$ length + 1. 1, to -start-sy'oni I length,
weight <-- 2, site -top)

*. endif

. ". DoProduction(length,startntprod) 4-

S,* The vectors ntlen and sum are used to generate every oossbie
*..- combination of lengths of symbols in this productior -'t'en,] is

the length of the i- nonterminai in proa su,[,] s the sum of
,/ the lengths of the first I - 1 nonterminals n proa

* set up initial configuration .

1weight -- 2 0 LengthOf(prod)
oteces .- NumberOfNon termin als(proc)

¢L
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nttot -- length -NumberOfTerminals(prod) length of all nt's

*check for an all-terminal production of the wrong length
if pieces = 0 and length Length~f(prod) then return

for i - 1 to pieces -1

ntlen(Il -

sum[/] --
endfor
sum(piecesl ] pieces - 1
nt/en [pieces] <-- nttot - sum [pieces]

*loop once for each configuration *

loop * until break *

*test configuration ~

where <-- start where the next symbol must begin
whichnt*-- 1 /* which nonterminal is next in the prod
for-eachs ymbol in prod

0- if lsNonterminal(symbo/) then
if Exists(symboi. where. n tlen~whichn tI) then

whichnt *- whichnt + 1
where <-- where + ntlen[which]

else oto next /* this configuration fails

else symbol is a terminal
if Exists(symboi. where. 1) then

where <- where + 1
else to next this configuration fails

endif
* endfor-each

i~a configuration with all subordinate units in existence
,~has been found.

if Not(Exists(nt start.fength)) then
MakeUnit(type *- Nonterminal, name -nt.start. length)

endif
*match un its are not named, so the index of the made
*unit is saved in a variable for future reference

match (-- MakeUnit(type *- Match)
wvhere *- start where the next symbol must begin '

ivhichnt f-1 *wnich nonterminal is next in the prod
*make links between match and subordinate units

for-each symbol in prod
if IsNontermrinal(symbo/) then

MaKeLink(from +- symbof. where- n tfen( whichn t],
to *-- 7natc7, site - bottom, weight w ~eight)

MakeLink(to i-symoo/ where.nrlen(whichnt],



from <-- match, site <-- top, weight ~
whichnt4-whichn t+ 1
where *-- where + ntlen~whI ch]

else /* symbol I s a terminal */
Makel-ink(from f-- symbol. where. ntlen(w.,hichnt],

to *-- match, site <-- bottom, weight *-- weight)
MakeL-ink(to *-- symbol. where. ntlen~whichn t],

from (-- match, site *--top, weight <- 1)
where <-- where + 1

endif
endfor

/make l inks between match and nt
MakeLink(from <-- match, to <-- nt start/len gth, site bottom,

weight -)

MakeLink(to <-- match,from +- nt.start./ength, site f-top,

weight ~1

next. *make next configuration ~

change pieces - 1
while(change > 0 and

n tlen(chan gel + sum(chan gel n ttot - (pieces - change))
change *-- change - 1

- - endwhile
if (change < 1 )then exitloop I* all done - no more ~

/* configurations *

endif
ntlen(changej *-- ntlen~chan gel + 1
for' i*- change +- 1 to pieces

nrlen(,i (-- 1
sum *-- sum~i - 11 + ntlen(i - 11

endfor
ntlen(pieces] *-- nttot - sum~pieces] '~last must take up slack

endloop
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Appendix Two

Unit Functions for Simple Network

• site functions - these return a value for each site of the unit These values
are used by the other functions below *

SFsum is used by bottom site of nonterminal units *,
SFsum(input-list)

sum = 0.0
- for-each input in Input-list

sum = sum + (Value(input)*Welght(input))
endfor-each
return sum

end SFsum
* SFfilterSum is used by bottom site of match units

SF f IterSum(Input-list)
sum = 0 0
for-each input in input-list

sum = sum + Min(Value(input), 5.0) * Weight(input)
endfor-each
return sum

end SFfilterSum

* SFmax is used by top site of nonterminal and terminal units *
SFmax(/nput-list)

hold = &0
for-each input in input-list

if(hold < (Value(input) *Weight( nput))) then
hold = (Value(mnput) *Weight(,nput))

*1 endif
endfor-each
return sum

end SFsum

' These functions are called to set unit parameters dfter the site functions
have been called The same one can be used for all units it externa primed
input is provided for the input string *

UFparse(unt)
if(unit state = off and SiteValue(unt,"bottom") 10 0) then

unit state = pr,,med
unit potential = 5 0
unit output = 5

else ifunit state = primed and SiteValue(un..r,"too") '00) then
unit state = on
unit potential = 10 0
unit output = 10

endif * else leave it alone *
end UFoarse

°s,
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